llElevenLabs

How we cut RAG latency
IN half for enterprise-scale

conversational systems




llElevenLabs

INntroduction

At enterprise scale, conversational agents rely on retrieval-augmented
generation (RAG) to ensure higher accuracy across large knowledge bases.
RAG grounds each model response in the company’s private knowledge base -
retrieving only the most relevant context for the query. Our system rewrites
every query before retrieval, collapsing dialogue history into a precise, auditable
prompt that ensures traceability across customer interactions and regulatory
audits.

For small datasets, context can be passed directly to the LLM. But for enterprise
environments - where knowledge bases can exceed hundreds of millions of
documents - RAG becomes the foundation for accuracy, scalability, and control.

Talk to an Al Agent Deployment Expert

Michal Korbela
Software Engineer

Author



https://elevenlabs.io/contact-sales

llElevenLabs

Where RAG
performance
pbreaks down

The challenge isn't accuracy - it's latency. Every request in our architecture
Includes a query rewriting stage as most user requests reference prior turns, so
the system needs to collapse dialogue history into a precise, self-contained query.
This step ensures precision but introduces a bottleneck: a dependency on a
single, externally hosted LLM for rewriting.

For example:

If the user asks: The system rewrites this to:

Can we customize those limits based Can Enterprise plan API rate limits be
on our peak traffic patterns? customized for specific traffic patterns?

The rewriting turns vague references like “those limits” into self-contained queries
that retrieval systems can use, improving the context and accuracy of the final

response.

Our initial retrieval pipeline relied on a single, externally hosted LLM - a design that
introduced hard dependencies on provider latency, uptime, and regional
throughput limits. As we began scaling deployments across enterprise workloads,
this single-threaded dependency became the dominant source of RAG delay.
This step alone added 80% of our total RAG latency - unacceptable when
operating across thousands of simultaneous conversations.



llElevenLabs

How we fixed It
with moael racing

We re-architected the query rewriting stage to run as a race across multiple
models, including self-hosted options colocated with our retrieval systems to

minimize network latency.

Parallel inference at scale

Each query is dispatched simultaneously to multiple models,
including our self-hosted Qwen 3-4B and Qwen 3-30B-A3B
variants. The first valid completion wins, cutting average
rewrite time dramatically.

Resilient fallbacks that keep
conversations flowing

If no model responds within one second, we fall back to the
user’'s raw message. Precision may drop slightly, but
conversations continue seamlessly without stalls.

Before
@
User Request —— STT — LLM — RAG — LLM — TTS
> 1 seconds
After
User says something ElevenLabs model Send text to lim to Retrieve additional context Send contextualized user Take lim's text output
turns it into text contextualize user’s query from knowledge base query with relevant and turn it into speech
relating to user query context to user’s [Im
LLM O
(External) \
User Request —— STT | LM ®* RAG -~ LLM B TTS
(Self Hosted)
x W . J

(Self Hosted)

This architecture eliminates a single point of failure, stabilizes response times across regions,
and ensures consistent performance even during provider-side slowdowns or outages.



llElevenLabs

The outcome:
sub-200ms RAG

This new architecture cut median
RAG latency in half, from 326ms to
155ms. Unlike many systems that
trigger RAG selectively as an
external tool, we run it on every
query. With median latency down
to 155ms, the overhead of doing
this Is negligible.

RAG total latency

4s

l

250 ms

500 r: MV )} Ju ‘d NM : MMM A J‘ M« f

125 ms
08/17 08/19 08/21

e p95 Mean: 634 ms == p/5 Mean: 379 ms
pS0 Mean: 272 ms

latency

Before After

Median Median

326ms 155ms
p436ms p250ms
p629ms p426ms

Racing also stabilized overall performance. Externally
hosted models fluctuate during peak demand, but our
Internal models stay consistent. Racing them together
smoothed latency variance and made outages
invisible to end users - conversations continued
seamlessly on self-hosted infrastructure.

For example, when one of our LLM providers
experienced an outage last month, conversations
continued seamlessly on our self-hosted models.
Since we already operate this infrastructure for other
services, the additional compute cost is hegligible.



llElevenLabs

Why it matters

Latency under 200ms transforms RAG from a bottleneck into a competitive
advantage. It enables real-time, compliant, and context-rich conversations over
vast internal data sets - without sacrificing performance or control.

Enterprises no longer need to choose between speed and traceability. With RAG
latency reduced to near-negligible levels, conversational systems can finally meet
the dual mandate of governance and real-time intelligence.

Our team is focused on one goal: building conversational systems that perform
predictably, scale globally, and stay compliant in the most regulated industries.

Talk to an Al Agent Deployment Expert



https://elevenlabs.io/contact-sales

