lIElevenLabs

Latency in
Conversational Al




How do you optimize latency for
Conversational Al?

Latency is what separates good Conversational Al applications
from great ones

9 Oswin Kruger Ruiz - Forward Deployed Engineer

User

Input Speech (over phone) Output Speech (over phone)
System
Telephone Network Telephone Network
ASR
TTS
VAD
LLM
Latency Data flow " Eleven I_(] bs

For most applications, latency is a mild concern. However, for conversational
Al, latency is what separates good applications from great ones.

For starters, the goal of conversational Al is fairly aspirational—to provide the
same feeling, touch, and voice as a human conversation, while surpassing a
human in intelligence. To accomplish this, an application must converse
without long silent gaps. Otherwise, the realism is shattered.

Conversational Al's latency challenge is compounded by its piecemeal nature.
Conversational Al is a series of intermediate processes, all considered state-
of-the-art in their respective fields. Each of these processes incurs additive
latency.

As a generative voice company, we’ve spent a long time studying how to
minimize latency for conversational Al. Today, we want to share our learnings,
out of hopes that they’ll be helpful for anyone interested in building
conversational Al applications.



The Four Core Components

Every conversational Al application involves at least four steps: speech-to-
text, turn-taking, text processing (i.e. LLMs), and text-to-speech. While these
steps are executed in-parallel, each step still contributes some latency.

Notably, conversational Al's latency equation is unique. A lot of process
latency problems can be reduced to a single bottleneck. For instance, when a
website makes a database request, the web’s network latency drive the total
latency, with just trivial contributions from the backend’s VPC latency.
However, conversational Al's latency components aren’t drastically varied.
They are uneven, but each component’s latency contribution is within a
degree of the others. Accordingly, latency is driven by a sum of parts.

Automatic Speech Recognition

The System’s “Ear”

Automatic speech recognition (ASR)—sometimes referred to as speech-to-
text (STT)—is the process of converting spoken audio into written text.

ASR’s latency is not the time it takes to generate text, as the speech-to-text
process runs in the background while the user speaks. Instead, the latency is
the time between the end of the speech and the end of the text generation.

User
Input Speech

System
ASR

Latency Data flow lIElevenLabs




Accordingly, short and long speaking intervals can incur similar ASR latency.
Latency can vary across ASR implementations (In some cases, there is no
network latency whatsoever as the model is embedded in the browser, such
as Chrome/Chromium). The standard open source model, Whisper, adds
300ms + latency. Our custom implementation adds <100ms.

Turn-Taking / Interruption

The System’s “Right Brain”

Turn-taking / Interruption (TTI) is an intermediary process that determines
when a user is finished speaking. The underlying model is known as a Voice
Activity Detector (or VAD).

Turn-Taking involves a complex set of rules. A short burst of speech (e.g. “uh-
huh”) shouldn't trigger a turn; otherwise, conversations would feel too
staccato. Instead, it must assess when a user is actually trying to fetch the
model's attention. It also must determine when the user is finished relaying
their thoughts.

A good VAD will not signal a new turn whenever it detects silence. There is
silence between words (and phrases), and the model needs to be confident
that the user is actually done speaking. To accomplish this reliably, it needs to
seek a threshold of silence (or more specifically, a lack of speech). This
process introduces a delay, contributing to the overall latency experienced by
the user.

User
Input Speech

System
ASR

VAD

LLM

Latency Data flow lIElevenLabs




Technically speaking, if all of the other conversational Al components incurred
zero latency, the latency attributed to TTI would be a good thing. Humans
take a beat before responding to speech. A machine taking a similar pause
gives realism to the interaction. However, since other components of
conversational Al already incur latency, minimal TTI latency is ideal.

Text Processing
The System’s “Left Brain”

Next, the system needs to generate a response. Today, this is typically
accomplished with a Large Language Model (LLM), such as GPT-4 or Gemini
Flash 1.5.

The choice of the language model makes a significant difference. Models like
Gemini Flash 1.5 are incredibly fast—generating outputs in less than 350ms.
More robust models that can handle more complex queries—such as GPT-4
variants and Claude—could take between 700ms to 1000ms. Choosing the
right model is typically the easiest way to target latency when optimizing a
conversational Al process.

However, the latency of the LLM is time it takes to start generating tokens.
These tokens can be immediately streamed to the following text-to-speech
process. Because text-to-speech is slowed by the natural pace of a human
voice, the LLM reliably outpaces it—what matters most is the first token
latency (i.e., time to first byte).

User
Input Speech

System
ASR

TTS
VAD

LLM

Latency Data flow IIElevenLabs




There are other contributors to an LLM'’s latency beyond the model’s choice.
These include the prompt length and the size of the knowledge base. The
larger of either, the longer the latency. It boils down to a simple principle: the
more that the LLM need to consider, the longer it takes. Accordingly,
companies need to strike a balance between a healthy amount of context
without overburdening the model.

Text to Speech

The System’s “Mouth”

The final component of conversational Al is text-to-speech (TTS). Text-to-
speech’s net latency is the time it takes to begin speaking after receiving
input tokens from text-processing. That's it—because additional tokens are
made available at a rate faster than human speech, text-to-speech’s latency
is strictly the time to first byte.

User
Input Speech Output Speech

System
ASR

VAD

LLM

Latency Data flow lIElevenLabs

Previously, text-to-speech was particularly slow, taking as long as 2-3s to
generate speech. However, state-of-the-art models like our Turbo engine are
able to generate speech with just 300ms of latency the the new Flash TTS
engine is even faster. Flash has a model time of 75ms and can achieve an e2e
135ms of time to first byte audio latency, the best score in the field (we have
to brag a little!).



Additional Contributors

Beyond the four components, there some additional contributors to
conversational Al's net latency.

Network Latency

There will always be latency associated with sending data from one location
to another. For some conversational Al applications, the ASR, TTI, LLM, and
TTS processes should ideally be co-located, so the only source of non-trivial
network latency is the paths between speaker and the entire system. This
gives us an advantage on latency as we can save two server calls since we
have our own TTS and an internal transcription solution.

User
Input Speech Output Speech

System I I

ASR

TTS
VAD I

LLM

Latency M Network Latency Data flow "ElevenLCle

Function Calling

A lot of conversational Al applications exist to invoke functions (i.e. interface
with tools and services). For instance, | might verbally ask the Al to check the
weather. This requires additional API calls invoked at the text-processing
layer, which can incur significantly more latency depending on the needs.

For example, if | need to order a pizza verbally, there might be multiple API
calls that are necessary, some with excessive lag (e.g. processing a credit
card).


https://elevenlabs.io/text-to-speech

User
Input Speech Output Speech

System I
ASR

O e

LLM / Function Calling

M Latency Data flow lIElevenLabs

However, a conversational Al system can combat the delays associated with
function calling by prompting the LLM to respond to the user before the
function call is finished (e.g. “Let me check the weather for you”). This models
a real-life conversation and doesn’t keep the user without engagement.

User
Input Speech Output Speech Output Speech

I -
System

ASR
B s s

LLM LLM
Function Call

M Latency M Network Latency Data flow lIElevenLabs

These async patterns are typically accomplished by leveraging webhooks to
avoid long-running requests.

Telephony

Another common feature for conversational Al platforms is to allow the user to
dial-in via the phone (or, in some cases, make a phone call on behalf of the
user). Telephony will incur additional latency—and this latency can be
severely geography dependent.



User
Input Speech (over phone) Output Speech (over phone)
System
Telephone Network Telephone Network
ASR
TTS
VAD
LLM
Latency Data flow lIElevenLabs

As a base, telephony will incur an additional 200ms of latency if contained to
the same region. For global calls (e.g. Asia > USA), the travel time can
increase significantly, with latency hitting ~500ms. This pattern could be
common if users have phone numbers outside of the region that their located
in—forcing a hop to their base country’s phone networks.

A closing thought

We hope this round-trip exploration of conversational Al was interesting. In
summary, applications should target a sub-second latency. This can typically
be accomplished by choosing the right LLM for the task. They should also
interface with the user whenever more complex processes are running in the
background to prevent long pauses.

At the end of the day, the goal is to create realism. A user needs to feel the
ease of talking to a human while getting the benefits of a computer program.
By tightening the sub-processes, this is how possible.

At Elevenlabs we are optimizing every part of the piece of a conversational Al
system with our state of the art STT and TTS models. By working on each
part of the process, we can achieve seamless conversation flows. This top-
down view on orchestration allows us to shave off a little latency—even Tms—
at every juncture.





